If it's not what You are looking for type in the equation solver your own equation and let us solve it.
44800-1432x+x^2=0
a = 1; b = -1432; c = +44800;
Δ = b2-4ac
Δ = -14322-4·1·44800
Δ = 1871424
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1871424}=1368$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-1432)-1368}{2*1}=\frac{64}{2} =32 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-1432)+1368}{2*1}=\frac{2800}{2} =1400 $
| 2u+u=15 | | 4/x=-4/8 | | 8x+2+4×+6=20×-40 | | 2x-20=1x-4 | | 44200-1334x+x^2=0 | | 150x5-180x3+54x=0 | | 2x^2-6=36 | | 5(×-6)+6=7x-6 | | -30+10x=34+12x | | 48=7u-u | | (3x-5)+(x-5)=180 | | 3x–6=3(x–1)–3 | | 6x+2=8x-67 | | x=2x+1800 | | -10n+3(+8n)=-6(n-4) | | 2x-10+4=-7x-6 | | P(h)=0.375h+3 | | -8x-8=3(x-2)=-3x+2 | | 1x+5=7x-67 | | 2-6(6-3n)=4n-20 | | (3x+7)=(5x-9) | | 20=2xx | | 5x+4+5x+4=8x+16 | | 2x+24=-28 | | 12-15=3(2x+3) | | 10p+9-11-p=-2(2p+)-3(2p-2) | | 8x+16=23,1 | | 2/1.25x=10-2.75x | | -9+x/2=16 | | -2(3x–4)=-2x+2 | | 27=-8(2v-7) | | 6x+36=5x-36 |